"Molecular motors, built from proteins, are a kind of transport service that keep us functioning by trafficking essential chemical packages throughout the cell. To understand how molecular motors work, some researchers are creating animations. Here, each "leg" of a molecular motor called dynein moves as it progresses along a cellular structure called a microtubule. New data—collected by a team led by Samara Reck-Peterson and published online Jan. 8, 2012, in "Nature Structural & Molecular Biology"—suggest that dynein's walk is even stranger than the one modeled." From the Harvard Medical School
|
"Dynein can step sideways, forward, backward, take big and little steps. This is in real contrast to other motors. It may even be able to step around any number of cellular obstacles. In these animations, made by Janet Iwasa, the microtubule highways are in gray and each fluorescently labeled "leg" of dynein (top panel) is represented by a red or blue dot. In contrast to dynein, other motors, such as kinesin (lower panel), step much more regularly." From the Harvard Medical School
|